Leveraging k-NN for generic classification boosting
نویسندگان
چکیده
Voting rules relying on k-nearest neighbors (k-NN) are an effective tool in countless many machine learning techniques. Thanks to its simplicity, k-NN classification is very attractive to practitioners, as it enables very good performances in several practical applications. However, it suffers from various drawbacks, like sensitivity to “noisy” instances and poor generalization properties when dealing with sparse high-dimensional data. In this paper, we tackle the k-NN classification problem at its core by providing a novel k-NN boosting approach. Namely, we propose a supervised learning algorithm, called Universal Nearest Neighbors (UNN), that induces a leveraged k-NN rule by globally minimizing a surrogate risk upper bounding the empirical misclassification rate over training data. Interestingly, this surrogate risk can be arbitrary chosen from a class of Bregman loss functions, including the familiar exponential, logistic and squared losses. Furthermore, we show that UNN allows to efficiently filter a dataset of instances by keeping only a small fraction of data. Experimental results on the synthetic Ripley’s dataset show that such a filtering strategy is able to reject “noisy” examples, and yields a classification error close to the optimal Bayes error. Experiments on standard UCI datasets show significant improvements over the current state of the art.
منابع مشابه
Boosting k-nearest neighbor classifier by means of input space projection
The k-nearest neighbors classifier is one of the most widely used methods of classification due to several interesting features, such as good generalization and easy implementation. Although simple, it is usually able to match, and even beat, more sophisticated and complex methods. However, no successful method has been reported so far to apply boosting to k-NN. As boosting methods have proved ...
متن کاملMulti-class Leveraged κ-NN for Image Classification
The k-nearest neighbors (k-NN) classification rule is still an essential tool for computer vision applications, such as scene recognition. However, k-NN still features some major drawbacks, which mainly reside in the uniform voting among the nearest prototypes in the feature space. In this paper, we propose a new method that is able to learn the “relevance” of prototypes, thus classifying test ...
متن کاملAdaptive Boosting for Spatial Functions with Unstable Driving Attributes
Combining multiple global models (e.g. back-propagation based neural networks) is an effective technique for improving classification accuracy by reducing a variance through manipulating training data distributions. Standard combining methods do not improve local classifiers (e.g. k-nearest neighbors) due to their low sensitivity to data perturbation. Here, we propose an adaptive attribute boos...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملBoosting the distance estimation: Application to the K-Nearest Neighbor Classifier
In this work we introduce a new distance estimation technique by boosting and we apply it to the K-Nearest Neighbor Classifier (KNN). Instead of applying AdaBoost to a typical classification problem, we use it for learning a distance function and the resulting distance is used into K-NN. The proposed method (Boosted Distance with Nearest Neighbor) outperforms the AdaBoost classifier when the tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 80 شماره
صفحات -
تاریخ انتشار 2012